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Spherical and cylindrical models for craze
growth

In a previous paper [1] we applied the technique
of finite element analysis to the problem of failure
by yielding of a uniform cylindrical void system,
taken as a model for the process of craze growth in
plastics. However, the smallest voids formed during
the initiation of crazing often seem to have a
spherical rather than a cylindrical form [2,3]. We
have, therefore, repeated some of our previous
calculations using a spherical hole model to estab-
lish whether or not there is a significant difference
in the conclusions reached. The new model simply
substitutes a three-dimensional system of spherical
holes for the two-dimensional cylindrical voids
used in the previous paper [1].

A single module of the spherical void array is
illustrated in Fig. 1 where the voids are of radius a

and their centres are spaced at an equal distance of
2(a + d) in each of the x, y and z directions. The
loading of prime interest is a hydrostatic tensile
loading which can be accomplished by prescribing
displacements A on the three facesx =a+d,y =
a+d and z=a+d in the x, y and z directions
respectively. The three faces defined by x =0,
y =0 and z = 0 are restrained from moving in the
x,y and z directions respectively.

Initially, two void volume fractions were con-
sidered corresponding to dfa = 0.5 and dfa = 0.1.
In each case the solution was performed using 1, 8
and 27 three-dimensional quadratic elements in
turn and the 8 element mesh employed is illustrated
in Fig. 1b. A Von Mises yield criterion was assumed
and the material properties, listed in Fig. la, are
the same as those employed in [1]. The variation
of the total reactive force on any face with increas-
ing prescribed displacement is shown in Fig. 2a
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Figure 1 Tllustration of spherical void model. (a) Module analysed;(b) quadratic isoparametric element mesh employed.
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Figure 2 Calculated stress/displacement curves for cylindrical and spherical models (for two-dimensional solution with
cylindrical model).
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Figure 3 Collapse stress plotted against volume fraction of voids for cylindrical and spherical models. (a) Hydrostatic
tensile loading; (b) unijaxial tension—fixed edge. Points for spheres to be placed on the relevant curve for Fig. 5 of

previous paper [1].

and b for dfa = 0.5 and dfa = 0.1 respectively. For
both situations the results for the 8 and 27 element
meshes are in good agreement, with the 1 element
idealization over-estimating the stiffness of the
model. The results of the previous two-dimensional
investigation [1] with the same d/a values are also
included in Fig. 2a and b. The two-dimensjonal
void volume fraction of 0.37 in Fig. 2a and 0.65 in
Fig. 2b correspond to the same void size and spac-
ing used in the respective three-dimensional analy-
ses and it is evident that on this basis a large
discrepancy exists between the two-dimensjonal
and three-dimensional results. However, from Fig
2b it is seen that the two-dimensional and three-
dimensional solutions compare well when the void
volume fraction is chosen to be of comparable
value, the collapse loads by both analyses then
only differing by some 5%.

Also of importance is the loading of such models
in unjaxial tension with a restrained lateral edge
condition as considered for the cylindrical model
in [1]. A plot of collapse stress against void volume
fraction is shown in Fig. 3. In Fig. 3a two- and
three-dimensional results for hydrostatic loading

are compared for three of the void volume fractions
employed in the previous paper [1] and Fig. 3b
shows a similar comparison for the uniaxial loading
case.

~From these results we can conclude that on a
volume basis the differences in yield behaviour in
hydrostatic tension between the spherical and
cylindrical models are not large, so that further
calculations may safely be made with the cylindri-
cal model.
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